Dynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water
نویسندگان
چکیده
A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatially localized in both directions. Branches of both line and lump solitary waves are computed via a numerical continuation method. The stability of each type of wave is examined. The transverse instability of line solitary waves is predicted by a similar instability of line solitary waves in the nonlinear Schrödinger equation. The spectral stability of lumps is predicted using the waves’ speed energy relation. The role of wave collapse in the stability of these waves is also examined. Numerical time evolution is used to confirm stability predictions and observe dynamics, including instabilities and solitary wave collisions.
منابع مشابه
Model Equations for Gravity-capillary Waves in Deep Water
The Euler equations for water waves in any depth have been shown to have solitary wave solutions when the effect of surface tension is included. This paper proposes three quadratic model equations for these types of waves in infinite depth with a two-dimensional fluid domain. One model is derived directly from the Euler equations. Two further simpler models are proposed, both having the full gr...
متن کاملTransversally periodic solitary gravity-capillary waves.
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are foun...
متن کاملMultilump Symmetric and Nonsymmetric Gravity-Capillary Solitary Waves in Deep Water
Multilump gravity-capillary solitary waves propagating in a fluid of infinite depth are computed numerically. The study is based on a weakly nonlinear and dispersive partial differential equation (PDE) with weak variations in the spanwise direction, a model derived by Akers and Milewski [Stud. Appl. Math., 122 (2009), pp. 249–274]. For a two-dimensional fluid, this model agrees qualitatively we...
متن کاملNonlinear Dynamics of Three-Dimensional Solitary Waves
In problems of dispersive wave propagation governed by two distinct restoring-force mechanisms, the phase speed of linear sinusoidal wavetrains may feature a minimum, cmin, at non-zero wavenumber, kmin. Examples include waves on the surface of a liquid in the presence of both gravity and surface tension, flexural waves on a floating ice sheet, in which case capillarity is replaced by the flexur...
متن کاملIntegral and Asymptotic Properties of Solitary Waves in Deep Water
We consider twoand three-dimensional gravity and gravity-capillary solitary water waves in infinite depth. Assuming algebraic decay rates for the free surface and velocity potential, we show that the velocity potential necessarily behaves like a dipole at infinity and obtain a related asymptotic formula for the free surface. We then prove an identity relating the “dipole moment” to the kinetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 70 شماره
صفحات -
تاریخ انتشار 2010